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Abstract—The advent of 5G-enabled edge servers presents an
opportunity to distribute computational tasks to the network
edge. This approach helps alleviate the strain on limited central
network resources caused by the rapid growth in the number
of mobile devices and computation-intensive services. Moreover,
it leads to reduced end-to-end delays for users. In this paper,
we investigate resource allocation optimization in a dynamic
multi-service system, where each service provider (SP) serves
geographically dispersed service subscribers (SSs). Each SP can
offload tasks to multiple edge servers, while each SS can freely
switch between SPs offering homogeneous services. We propose
the Multi-Stage Coalition Game Task Offloading (MSCGTO)
framework, accommodating scalability, resource heterogeneity,
and dynamic conditions. This framework encompasses two dis-
tributed algorithms to jointly maximize SP profit and minimize
SS end-to-end delay, addressing cost-benefit considerations and
user latency acceptance. We conduct extensive simulations and
practical experiments with real-world services including aug-
mented reality (AR), online gaming, and live video streaming
applications, performed in a controlled testbed environment.
The results of our experiments demonstrate that the proposed
algorithms yield a 25% increase in system utility considering
both the profit of SPs and the end-to-end delay of SSs when
compared to existing approaches.

Index Terms—Task offloading, edge computing, resource allo-
cation, game theory, coalition game.

I. INTRODUCTION

W ITH the proliferation of mobile devices and the rapid
expansion of extended reality (XR) services such as

augmented reality (AR), virtual reality (VR), and mixed reality
(MR), the global mobile data traffic has been experiencing
exponential growth. According to Ericsson’s 2022 report [1],
the monthly global mobile network traffic surged from 55
exabytes (EB) to 108 EB between 2020 and 2022, doubling
over a span of two years. Projections indicate that this trend
will continue, with mobile data traffic anticipated to reach 453
EB by 2028, quadrupling over the course of six years. Video
traffic is expected to dominate, accounting for 80% of the
total mobile data traffic by 2028, representing a 10% increase
from 2022. Moreover, XR services are expected to contribute
significantly to this data load. Concurrently, the adoption of
5G technology is poised for substantial growth, with its share
of total mobile subscriptions projected to increase from 17%
in 2022 to 69% by 2028. The escalating mobile data traffic
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poses immense pressure on existing mobile networks, resulting
in elevated end-to-end delays for service subscribers (SSs) and
impeding service providers (SPs) in meeting quality of service
(QoS) requirements. In response to these challenges, multi-
access edge computing (MEC) [2] has emerged as a practical
solution. By offloading computation to the network edge,
MEC mitigates the strain on limited central network resources
and reduces end-to-end delays for services. The lightweight
nature of edge computing facilitates efficient distribution and
management of computation and services across a diverse
range of edge nodes, providing flexibility and scalability [3].

While MEC enables the delivery of services with greatly
improved quality of service (QoS) [4] [5] [6] [7], the allocation
of resources remains a challenging task due to the costs
associated with edge servers and their limited computational
capacity. Moreover, prevalent approaches often rely on cen-
tralized cloud servers for MEC resource admission control,
raising concerns regarding privacy, security risks, a single
point of failure, and substantial communication overhead [8]
[9]. Distributed collaborative solutions have been proposed to
tackle these issues. One such approach involves exploring col-
laborative caching between edge servers to enhance the cache
hit ratio [10] [11] [12], thereby enabling more efficient utiliza-
tion of the limited storage available in distributed edge nodes.
Another aspect that has been discussed is the sharing of edge
server resources among homogeneous SPs [13] [14] [15] [16].
These discussions employ game theoretical methods to model
the interactions between SPs as a coalition game and seek to
identify a Nash-stable partition. By sharing edge servers with
each other, SPs can reduce infrastructure costs, optimize the
utilization of underused edge servers, and ultimately increase
their profits. However, these studies overlook the possibility
of an SP serving geographically dispersed users and assume
that each SP only utilizes a single edge server. Consequently,
meeting the QoS requirements of distantly located SSs remains
a challenge, thereby limiting the potential for SPs to enhance
their profits. Furthermore, no existing study simultaneously
considers the profitability of SPs and the QoS experienced
by users in a multi-service system, while also evaluating the
results using real-world data in a practical environment.

In light of these considerations, it is imperative to explore a
profit-aware and collaborative approach within a more realistic
system. Several challenges need to be addressed to achieve a
viable solution. Firstly, SPs must have incentives to engage
in collaborative efforts instead of individually renting and
offloading tasks to edge servers. Secondly, when an SP shares
its computation resources with another, the additional latency
introduced by collaboration, or specifically, the increase in
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queuing delay due to serving more requests on the same set
of edge server virtual machines (VMs), needs to be taken into
account. Thirdly, if each SP is limited to offloading tasks to
only one edge server, it will still be unable to meet the delay
requirements of distant SSs. Fourthly, the system may en-
compass multiple services, making it challenging to manage a
heterogeneous environment involving various SPs, SSs, and re-
quests of diverse sizes and rates. Fifthly, in dynamic conditions
where the switching cost for SSs is negligible, the system must
consider the mobility of SSs, allowing them to freely switch
between different SPs offering similar services to improve
user acceptance. Sixthly, while collaborative approaches to
resource allocation have received considerable attention, most
existing works rely solely on simulation-based experiments.
Therefore, it is essential to assess prospective solutions within
a real-world setting, utilizing real-world data, to bridge the gap
between theoretical progressions and practical implementation.
Finally, the approach must exhibit high scalability to ensure
that a real-world implementation, constrained by hardware
limitations, can maintain acceptable latency even in large-scale
scenarios.

Motivated by the aforementioned work and the challenges
identified, we propose a Multi-Stage Coalition Game Task
Offloading (MSCGTO) framework. The objective of this
framework is to address the resource allocation optimization
problem in a multi-service system that involves numerous
edge servers, SPs, and SSs. In this system, SPs have the
capability to offload their tasks to multiple edge servers
through collaborative efforts. Initially, each SP serves a set of
geographically distributed SSs, but later, the SSs are permitted
to switch between SPs offering the same service. To tackle
the complexity of this dynamic multi-hierarchical problem,
we develop a two-stage coalition formation model. In the first
stage, SPs providing the same service form and join multiple
coalitions to share resources across multiple edge servers. The
goal of these coalitions is to satisfy the demands of their
respective SSs while maximizing their individual profits. This
stage focuses on resource sharing and collaboration among
SPs. In the second stage, the SSs evaluate the performance
of the SPs offering the same service and make decisions
to switch to the SP that offers the lowest delay. This stage
aims to optimize the end-to-end delay experienced by the
SSs by allowing them to select the most favorable SP based
on their individual requirements. By decoupling the complex
multi-hierarchical problems into these two stages, the pro-
posed MSCGTO framework provides a systematic approach
to address resource allocation challenges in a multi-service
system of heterogeneous resources that aligns with cost-benefit
considerations. It takes into account both the collaboration
among SPs and the switching decisions of SSs to optimize the
overall system performance and enhance the user experience
and acceptance in terms of delay.

The contributions of this paper are summarized as follows:
• We propose a collaborative task offloading framework

in a multi-service system, allowing each SP to leverage
multiple edge servers and capitalize on the lightweight
nature of edge deployment. This framework enables SPs
to collaborate with other homogeneous SPs to serve

geographically distributed SSs. Additionally, each SS is
given the flexibility to switch between SPs. By adopting
this mechanism, the profit of SPs can be maximized, and
the delay experienced by SSs can be minimized.

• We formulate the resource allocation optimization prob-
lem as a two-stage coalition formation game and an-
alyze it using game-theoretical principles. We develop
two decentralized resource allocation algorithms to find
stable coalition formations, which facilitate efficient col-
laboration among SPs and enhance the overall system
performance.

• We conduct extensive simulation experiments to evalu-
ate the performance of the proposed algorithms under
various system configurations, revealing the MSCGTO
framework to reach a 25% increase in system utility
compared to existing approaches [16] [14]. Moreover, we
substantiate the efficacy of our approach by conducting
practical experiments using real services on a dedicated
testbed.

The rest of this paper is organized as follows. Section II
discusses related works. Section III describes the system
model. Section IV presents the coalition formation models.
Section V formulates the problem and presents two distributed
algorithms to solve it. Section VI evaluates the performance of
the proposed algorithms through comprehensive experiments.
Section VII concludes the paper.

II. RELATED WORKS

In this section, we review existing literature on task of-
floading, service caching, and coalition formation approaches
in resource allocation. We then compare these approaches to
our proposed framework, highlighting its unique features and
advantages.

A. Task Offloading and Service Caching

Task offloading with MEC has received significant research
attention in recent years. Several studies have proposed innova-
tive approaches to address different aspects of task offloading
optimization. For instance, in [23], the authors introduce an
efficient task offloading scheme based on software-defined
networks, focusing on minimizing delay and conserving bat-
tery life. Similarly, [24] presents a comprehensive model for
multi-user multi-task computation offloading in MEC, taking
into account resource allocation, compression, and security
concerns. In the context of an MEC-enabled multi-cell wireless
network, [25] investigates the joint problem of task offloading
and resource allocation to maximize the benefits for users.
Additionally, [26] employs deep Q-learning to dynamically re-
configure the network slicing scale for optimizing task offload-
ing efficiency. Furthermore, [27] introduces a novel approach
that combines a multileader multifollower Stackelberg game
and reinforcement learning to determine data offloading and
pricing strategies in a risk-aware prospect-theoretic scenario.

Service caching has gained considerable attention in recent
years as a means to reduce service latency and enhance
user experience by caching services at the network edge.
Researchers have explored various techniques and algorithms
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TABLE I: Literature Review

# Objective Player Service User set Substrate network ES coalition granularity Coalition membership Requests Testbed
[17] SS utility SS Multiple N/A Multiple edges Single coalition Single coalition only Simulated X
[18] device utility device Single N/A Single edge N/A Single coalition only Simulated X
[19] device profit device Single N/A Multiple edges Single coalition Single coalition only Simulated X
[20] BS utility BS Multiple N/A Multiple edges N/A Single coalition only Simulated X
[21] BS utility BS Multiple N/A Multiple edges N/A Single coalition only Simulated X
[22] UE computation UE Single N/A Single edge Multiple coalitions Single coalition only Simulated X
[15] SP profit SP Multiple Dynamic Multiple edges Single coalition Single coalition only Real data X
[13] SP utility SP Single Static Multiple edges Single coalition Single coalition only Simulated X
[14] SP utility SP Single Static Multiple edges Single coalition Single coalition only Simulated O
[16] SP profit SP Single Static Multiple edges Multiple coalitions Single coalition only Simulated X

Proposed SP & SS utility SP & SS Multiple Dynamic Multiple edges Multiple coalitions Unrestricted Real data O

to optimize edge caching strategies. For instance, in [28], deep
reinforcement learning and federated learning techniques are
leveraged to enhance edge caching performance. The authors
in [4] discuss different caching techniques in 5G mobile net-
works and propose an edge caching scheme based on content-
centric or information-centric networking. Additionally, [29]
introduces a context-aware proactive caching algorithm that
considers the context information of connected users to update
cache content and observe cache hits. These studies contribute
valuable insights into the optimization of service caching in
edge environments, aiming to improve latency and overall user
satisfaction.

While the previously mentioned studies emphasize the use
of MEC to enhance user quality of service through task
offloading or service caching, they do not explicitly take into
account the opportunity for collaboration among heteroge-
neous entities.

B. Coalition Game-Based Resource Allocation

Game theory is indeed a valuable tool for studying the
interactions among players, whether they are SPs, SSs, or edge
servers, in wireless networking systems. It offers a profit-aware
alternative to central coordination by capturing the strategic
behavior of individual players. Considering that each player
is rational and self-interested, game theory enables the design
of mechanisms that guide the system toward an equilibrium
with desirable properties through the introduction of rules
and constraints. When compared to other techniques such
as reinforcement learning, game theory excels in modeling
strategic interaction, cooperative dynamics, equitable resource
allocation, Pareto optimality, and Nash equilibrium while
maintaining interpretability.

Collaboration among players is often modeled using coali-
tion formation games. In such games, players form coalitions
to collaborate and share resources, such as spectrum sharing,
collaborative service caching, or MEC resource sharing for
joint task offloading. Coalition game solutions exhibit de-
sirable properties, including individual rationality and Nash
stability, implying that no player has an incentive to unilat-
erally deviate from the final solution. By employing coalition
formation games, we can effectively model and analyze the
collaborative dynamics in wireless networking systems, en-

suring that the resulting solutions are stable and beneficial for
all participants.

In the existing literature, there are several studies that
employ coalition game theory to address resource allocation
and collaboration in various wireless networking scenarios.
In [17], a joint match-coalitional game-based algorithm is
proposed to optimize resource allocation and improve effi-
ciency and profits by allowing base stations (BSs) to form
coalitions and share wireless and security resources. Similarly,
[18] presents a collaborative task execution scheme for de-
vices, ensuring individual rationality and promoting efficient
resource utilization. In the context of blockchain networks,
[19] applies coalition game theory to computation resource
allocation, considering both individual and coalition profits.
In the study presented in [20], the authors focus on service
placement in MEC-enabled dense small cell networks using
coalition formation game. By allowing BSs to collaborate and
optimize service placement decisions, the operation cost of
the edge system can be effectively reduced. In [21], a two-
level stochastic hierarchical game is proposed to model the
behavior of selfish BSs in networks where BSs are owned by
different SPs. At the upper level, BSs participate in a coalition
formation game to reach a stable partition, while at the lower
level, stochastic subgames within each coalition are solved
using reinforcement learning techniques. The authors of [22]
exploit multi-carrier nonorthogonal multiple access (NOMA)
enabled MEC systems using coalition formation game. They
formulate user equipment (UE) as players and subcarriers
as coalitions, achieving a Nash-stable solution through their
proposed coalition game-based algorithm. In the context of
cooperative service caching, [15] explores a hybrid service
provisioning framework and utilizes hedonic game theory to
design a dynamic coalition algorithm that enhances overall
profit. Similarly, [13] demonstrates the significant reduction
of social costs for SPs through cooperative service caching.
In their scenario, SPs sharing the same edge server form a
coalition, enabling them to share computation resources and
costs. The practical effectiveness of distributed coalition game-
based approaches is further investigated in [14] through experi-
ments conducted on a real testbed. Lastly, in our previous work
[16], we discuss a scenario where SPs have the capability to
form multiple coalitions within a single edge server, thereby
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Fig. 1: The proposed multi-service coalition game-based task
offloading system.

Fig. 2: The system workflow of the novel MSCGTO frame-
work.

maximizing the utilization of edge server resources.
A comparison of related works using coalition game for

edge server resource allocation optimization is presented in
Table I. It is apparent that existing works have overlooked the
potential for players to join multiple coalitions. Furthermore,
none of the studies have considered the scenario where users
have the flexibility to dynamically switch between different
SPs to improve user acceptance, multiple coalitions can coexist
within a single edge server to enhance scalability, and real-
world data is utilized to evaluate the practicality of the
proposed algorithms in a real-world environment.

III. SYSTEM MODEL

In this section, we first provide an overview of the system
architecture of the proposed MSCGTO framework. We then
present the mathematical models that capture the important
aspects of the system, including the delay of service, the
revenue, cost, and profit of SPs, and the utility of SSs.

The system model depicted in Fig. 1 represents a multi-
service system composed of various heterogeneous compo-
nents. Specifically, the system includes three distinct services:
VR/AR service, online gaming service, and live video stream-
ing service. Each of these services imposes strict demands,
requiring either low latency or high computational capabilities.
The system includes four key components: a cloud server, M
edge servers, N SPs, and S SSs. The set of servers, denoted as
M = {0, 1, · · · ,M}, encompasses the cloud server (0) and
M edge servers (1 ∼ M ) based on the 3-tiered IEEE 1935
edge architecture [30]. Each of the edge servers consists of
an orchestrator, control nodes and VMs, which are compute
nodes on physical hosts. The orchestrator acts as the broker
between the resources within its edge server and the SPs. The

set of SPs, denoted as N = {1, · · · , N}, includes N entities
(1 ∼ N ) responsible for providing services. The set of SSs is
represented as S = {1, · · · , S} and consists of S subscribers
(1 ∼ S) who require access to the services.

In the system model, each SP and SS is associated with one
of the three services (VR/AR, online gaming, or live video
streaming). During the first stage of the game, SPs belonging
to the same service are permitted to form coalitions with each
other. In this stage, each SS is initially assigned to an SP of the
corresponding service. However, in the second stage, SSs have
the flexibility to switch to another SP within the same service.
This two-stage process allows for collaboration among SPs
and enables SSs to optimize their SP selection. The overall
workflow of the system is visualized in Fig. 2.

The edge servers in the system are offered by infrastructure
providers, and SPs have the option to lease resources from
them. When SPs leasing VMs from the same edge server
decide to collaborate, they form an SP coalition. Within
a coalition, SPs share their resources and jointly bear the
associated costs. An SP can choose to directly obtain its
service from the cloud server or offload its service to one
or more edge servers to minimize latency. If an SP decides to
utilize an edge server, it has the flexibility to decide whether
to lease and pay for the VMs provided by the infrastructure
providers or share the pool of VMs with other SPs that are
also utilizing the same edge server. This sharing mechanism
reduces costs and optimizes the utilization of idle resources.
To cater to geographically distributed SSs and evenly distribute
the load of SS requests, an SP can participate in multiple
coalitions across different edge servers.



5

A. SP Delay Model

The delay model for the service of each SS is composed of
two components: propagation delay and response delay. When
an SS is served by the cloud, the response delay remains
constant. However, if the SS is served by a coalition on an
edge server, the response delay is determined by the total
response time of an M/M/c queue. The delay is represented
by the formula:

Ds = Ds
p +Dk

r (1)

where

Ds
p = αds (2)

Dk
r =


E(νk,

νk·µ
υk·λK

k

)

νk · µ− υk · λK
k

+
1

µ
, if 1 ≤ m ≤ M

γ, if m = 0

(3)

where

E(a, b) =
1

1 + (1− b)( a!
ba )
∑a−1

i=0
ai

i!

(4)

where Ds is the total delay of the service of SS s received, k
is the coalition SS s is in, Ds

p is the propagation delay from
the server of SS s to itself, Dk

r is the total response delay
of coalition k, α is the ratio of propagation delay to distance
traveled, ds is the distance between SS s and its server, m
is the server coalition k is in, E is Erlang’s C formula [31],
which calculates the probability of a job in an M/M/c queue
being sent into the queue rather than being served immediately,
γ represents the response delay of the cloud server, νk is the
number of VMs in coalition k, υk is the total number of SSs
served by coalition k, µ is the processing rate of each VM,
and λK

k is the request rate of each SS of the service offered
by coalition k.

B. SP Revenue Model

The revenue of each SP is derived from the payments made
by its SSs. An SS will pay its SP if the delay of the received
service meets the agreed delay guarantee. Conversely, if the
delay requirement is not met, the SP will have to pay a penalty
to the SS.

The revenue of SP n can be formulated as:

Rn =
∑
s∈Sn

qs (5)

where

qs =

{
ps, if xs = 1

−βps, if xs = 0
(6)

where

xs =

{
1, if Ds ≤ Ts

0, otherwise
(7)

where Rn is the revenue of SP n, Sn is the set of SSs served
by SP n, qs denotes the payment made by SS s to its SP, ps
represents the service subscription price of SS s, 0 < β ≤ 1
is the penalty-to-price ratio, xs is a binary variable indicating
whether the delay of the service received by SS s satisfies the
agreed delay requirement or not, Ds is the delay of the service
of SS s as defined in Eq. (1), and Ts is the delay requirement
of SS s.

C. SP Cost Model
The cost incurred by each SP is associated with the payment

made to infrastructure providers for leasing edge server VMs.
The cost model is expressed as follows:

Cn =
∑

k∈KN
n

Ck
n (8)

Ck
n =

{
νkc

v υn
k

υk
, if 1 ≤ m ≤ M

0, if m = 0
(9)

υk =
∑
n∈k

υn
k (10)

where Cn represents the total cost incurred by SP n to serve
its SSs, Ck

n denotes the cost for SP n to use the resource
of coalition k, KN

n is the set of coalitions in which SP n
participates, νk denotes the number of VMs in coalition k, cv

signifies the cost associated with leasing a VM, υk is the total
number of SSs served by coalition k, υn

k denotes the number
of SSs served by SP n within coalition k, and m refers to the
server in which coalition k is located. If the coalition exists
on the cloud server (i.e., m = 0), the cost is zero since there
is no expense incurred for utilizing edge server resources.

D. SP Profit Model
The profit of each SP is determined by the difference be-

tween its revenue and cost. The profit model can be expressed
as:

Pn = Rn − Cn (11)

where Pn represents the profit of SP n, Rn denotes the revenue
of SP n as defined in Eq. (5), and Cn represents the cost
incurred by SP n as defined in Eq. (8).

E. SS Utility Model
The utility of an SS is determined based on the normalized

surplus of the delay of service received. It can be expressed
as:

Vs =
Ts −Ds

Ts
psxs (12)

where xs is the binary variable defined in Eq. (7). The surplus
of the delay of service, which is the difference between the
delay requirement Ts and the actual delay of the service
received Ds, is normalized with respect to Ts and multiplied
by the subscription price ps. This formulation allows for the
optimization of utility along with the profit of the SPs, as
defined in Eq. (11). It is important to note that the utility is
zero if the delay requirement is not met.
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IV. COALITION FORMATION MODELS FOR SPS AND SSS

In this section, we delve into the coalition formation models
tailored for the proposed MSCGTO framework. These models
play a crucial role in optimizing resource allocation, fostering
collaboration among SPs, and ensuring the satisfaction of SSs.
Building upon the profit considerations for SPs and the utility
of SSs discussed in Section III, we present the comprehensive
models that encapsulate the dynamic aspects of the multi-
service environment through coalitional game theory.

A. SP Collaborative Task Offloading Model

The collaboration between SPs is investigated through a
coalition game, which is formulated as follows:

• Player: There are N SPs, and they are the players.
• Strategy: Each SP has 3 strategies.

1) Obtain services from the cloud server.
2) Offload SS requests by leasing VMs on an edge

server.
3) Offload SS requests by joining one or more coali-

tions on edge servers to share VMs with other
coalition members.

• Utility: The utility of an SP is determined by its profit,
as defined in Eq. (11).

An SP coalition is a group of SPs sharing the same set
of VMs and the associated costs on an edge server. It can
consist of one or more SPs. These coalitions can vary in size,
consisting of one or more SPs, and multiple coalitions can
coexist within a single edge server. Moreover, each SP has
the flexibility to join multiple coalitions across different edge
servers, enabling them to enhance their profits.

To formally define the coalition games within this system,
we provide the following definitions:

Definition 1. A coalition formation game for SPs can be
defined as a Triplet (N , C, UN ), where N is the set of SPs, C
is a collection of SP coalitions, and UN denotes the coalition
utility of SPs.

Definition 2. A collection of SP coalitions C is defined
as any arbitrary set of coalitions KN

i ⊂ N , i.e., C =
{KN

1 ,KN
2 , ...,KN

i , ...,KN
K }, such that coalitions can over-

lap. If C covers the entire SP set N , i.e.,
⋃K

i=1 K
N
i = N , C

can also be regarded as a covering of N .

Definition 3. UN
n (E) is the utility of SP n ∈ N under the

SS request distribution strategy set E for all SPs. E specifies
how each SP distributes its SS requests among its multiple
coalitions, ensuring that each request is served by one and
only one coalition.

An SP can only leave or join a coalition when it will not
reduce other SPs’ utilities. In other words, each operation
needs to be a Pareto improvement to the system. If SPs are
allowed to frequently leave or join in a way that hurt others, the
long-term success of the system will be undermined. However,
by only allowing changes that are Pareto improvements, each
SP is guaranteed to at least maintain its current utility, and
possibly increase it. This ensures that no SP will be worse

off from collaboration, providing a strong incentive for SPs to
participate in the coalition game.

Based on the coalition formation game model [32], we
introduce the Pareto-based preference relation of SPs as below:

Definition 4. (Pareto-Based Preference Relation for SPs) For
any SP n ∈ N , we propose the following preference relation:

KN
n

′ ≻IS
n KN

n ⇐⇒
UN
n (E ′) > UN

n (E)
UN
j (E ′) ≥ UN

j (E) ∀j ∈ KN
i ∀KN

i ∈ KN
n

′
(13)

where KN
n denotes the set of coalitions SP n is originally in,

KN
n

′ denotes the new set of coalitions of SP n, and E ′ is the
SS request distribution strategy set after the set of coalitions
SP n is in becomes KN

n
′. This means that an SP will prefer

the coalition set KN
n

′ to KN
n if and only if its profit can be

increased and if the profit of any other SP in the coalitions
affected won’t be jeopardized, including the SPs that share at
least one coalition with SP n.

Definition 5. (Join and Leave Rule for SPs) For any SP
n ∈ N , it will join the coalition KN

i′ if and only if {KN
n ∪

{KN
i′ }} ≻IS

n KN
n , where KN

n denotes the set of coalitions SP
n is originally in. When the preference relation is satisfied,
joining KN

i′ will be a Pareto improvement of the system.
Similarly, it will leave KN

i′ if and only if {KN
n \KN

i′ } ≻IS
n KN

n .
When the preference relation is satisfied, leaving KN

i′ will be
a Pareto improvement of the system.

B. SS Hedonic Coalition Formation Model

After the SPs have established a stable coalition structure
for collaborative task offloading, the SSs have the flexibility to
switch between SPs that offer the same type of service in order
to maximize their own utility. While an SP can join multiple
computation coalitions, an SS of the SP can only send its
requests to one of the coalitions. Thus, when an SS decides to
switch between different SPs, it is essentially choosing which
computation coalition to join. In light of this, we can formulate
the coalition game as follows:

• Player: There are S SSs, and they are the players.
• Strategy: Each SS can decide which SP to subscribe

to, essentially deciding which underlying computation
coalition to use.

• Utility: The utility of an SS is defined in Eq. (12).
The set of SSs using the same computation coalition, i.e.,

the same set of VMs, is defined as a coalition. In the following,
we discuss some properties of the coalition game:

Property 1. The proposed SS coalition game is a non-
transferable utility (NTU) game.

In the SS coalition game, the utility of each SS is determined
by the delay of service received, which is specific to each
individual SS. This means that the utility cannot be transferred
between SSs. Therefore, the game satisfies the criteria of an
NTU game [33], where the utility cannot be redistributed
among the players.
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Property 2. The proposed SS coalition game is a class of
hedonic game.

A hedonic game is a type of NTU game in which players
have preferences over which coalition they belong to, and
their utility depends solely on the composition of the coalition
they are in, rather than how other players are grouped. In
the proposed SS coalition game, each SS has a preference
over the computation coalition they join, and their utility
is determined by the delay of service received within that
coalition, independent of how other players are partitioned
or the specific coalitions they form, since the computation
load of different sets of VMs does not affect each other in
any way. This aligns with the characteristics of a hedonic
game [34]. Additionally, hedonic games typically involve self-
interested players who make choices based on their individual
preferences, which is applicable in this scenario as SSs aim to
maximize their utility by switching between SPs. Therefore,
the proposed SS coalition game satisfies the properties of being
a hedonic game.

We define the SS coalition game as follows:

Definition 6. A coalition formation game for SSs can be
defined as a Triplet (S,P, US), where S is the SS set, P
is a collection of SS coalitions, and US denotes the coalition
utility of SSs.

Definition 7. A collection of SS coalitions P is defined as
any arbitrary set of disjoint coalitions KS

i ⊂ S i.e. P =
{KS

1 ,K
S
2 , ...,K

S
i , ...,K

S
S }, such that ∀i ̸= i′, KS

i ∩KS
i′ = ∅.

If P spans the set of SSs S, i.e.,
⋃S

i=1 K
S
i = S, P can also

be regarded as a partition of S.

Definition 8. A solo coalition {s} contains only the unserved
SS s. The set of solo coalitions S̃K under set KS is defined as
S\{S ∩ KS}. S̃K is a subset of S .

Definition 9. US
s (K

S
s ) is the utility of SS s in coalition KS

s .

Definition 10. (Preference Relation for SSs) For any SS
s ∈ KS

i where i ∈ N , we propose the following preference
relation:

KS
i ≻s K

S
j ⇐⇒ US

s (K
S
i ) > US

s (K
S
j ) ∀j ∈ N (14)

US
s (K

S) =

{
Vs, if KS ̸∈ H(s)

−∞, else
(15)

where Vs is the utility of SS s defined in Eq. (12), and H(s)
denotes the history set of the coalitions SS s has joined and
left. This means that SS s will prefer coalition KS

i to KS
j if

and only if its preference value can be improved by splitting
from KS

i as a solo coalition {s} and merging with coalition
KS

j . Since the preference value is −∞ for coalitions in the
history set, SS has no incentive to revisit a coalition. It can
be seen as a learning process.

Definition 11. (Split and Merge Rule for SSs) For any SS
s ∈ KS

i , it will split from KS
i and merge with KS

j , if and
only if {KS

j ∪ {s}} ≻s K
S
i , where i, j ∈ N .

TABLE II: List of Notations

Notation Meaning
N ,M,S The set of SPs, edge servers, and SSs.
N,M,S The number of SPs, edge servers, and SSs.
KN The set of SP coalitions.
K The number of SP coalitions.
KN

n The set of coalitions that SP n is in.
KN

k The set of SPs using coalition k.
KS

n The set of SSs using SP n.
σN
i , σS

i The service type of SP i and SS i.
λK
k Request rate of each SS of the service of coalition k.
µ Processing rate of each VM.
γ Response delay of the cloud.
νk The number of VMs in each coalition.
υk The total number of SSs served by coalition k.
υn
k The number of SSs of SP n served by coalition k.
α Delay-distance ratio.
β Price-penalty ratio.
cv Cost of a VM.
A The matrix of SP offloading decisions.
B The vector of SS subscribing decisions.
E The vector of SS coalition assignments.

V. PROBLEM FORMULATION

In this section, we will mathematically formulate the ob-
jective of our work, which is to optimize the utility of the
system. Given the complexity and multiple hierarchies present
in the system, we later decompose the original problem into
two distinct subproblems.

For clarity, the main notations involved in our system are
summarized in Table II.

A. Overall Problem Formulation

The optimization goal is to maximize the total utility of the
system under various constraints, which can be formulated as

max
A,B

(∑
n∈N

(Rn − Cn) +
∑
s∈S

Ts −Ds

Ts
psxs

)
s.t.
C1 : ank ∈ {0, 1}
C2 : ∃k ∈ KN

n s.t. ank = 1 ∀n ∈ N
C3 : σN

i = σN
j ∀i, j ∈ KN

n ∀n ∈ N
C4 : 1 ≤ bs ≤ N

C5 : σS
i = σS

j ∀i, j ∈ KS
n ∀n ∈ N

(16)

where A = {ank|n ∈ N , k ∈ KN } and B = {bs|s ∈ S},
expressing the strategies of SPs and SSs. ank = 1 if SP n
participates in coalition k, and ank = 0 if not. bs denotes the
SP that serves SS s. σN

i and σS
i are the service type of SP i

and SS i respectively, The first component is the sum of the
profit of all SPs defined in (11), and the second component is
the sum of the utility of all SSs defined in (12). Constraints
C1 and C2 state that for every coalition, each SP is either
inside the coalition or not, and that each SP needs to be in at
least one coalition. Constraint C3 ensures that every SP inside
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a coalition belongs to the same type of service. Constraint
C4 guarantees that each SS can only be served by one SP.
Constraint C5 requires all SSs served by the same SP to be
subscribing to the same type of service.

Due to the involvement of different hierarchies in the
decision-making processes of A and B, we will decompose the
original problem into two subproblems. This decomposition
allows us to address the challenges faced by SPs and SSs sep-
arately, solving them sequentially in a more efficient manner.
We will formulate and optimize the subproblems individually
to achieve our overall objective.

B. First Stage: Pareto-Base Coalition Formation Game for
Service Providers

1) maximize total SP profit, which can be formulated as:

P1:
max
A

∑
n∈N

(Rn − Cn)

s.t. C1, C2, C3

(17)

SPs aim to maximize their individual profits by deciding
which coalitions to join. This process leads to a stable coalition
formation, where no SP has the incentive to leave its current
coalitions or join another coalition, based on the Pareto-based
preference criterion described in Definition 5.

To address this problem, we propose an efficient distributed
algorithm for solving the coalition game and achieving an in-
dividually stable outcome. The algorithm begins by initializing
the locations of the servers and the SSs of the SPs. Initially,
all SPs provide their services from the cloud. Each SP then
has the opportunity to offload its tasks to one or more edge
servers, optimizing its profit by joining or leaving coalitions.
The algorithm continues until no SP has any incentive to
deviate from its chosen strategy. At this point, the equilibrium
is reached, and the algorithm terminates. For a detailed step-
by-step description of the algorithm, refer to Algorithm 1.

We can prove the convergence and stability properties as
follows.

Definition 12. A covering C is individually stable if

KN
n ≻IS

n {KN
n \KN

i }
∀KN

i ∈ KN
n ∀n ∈ N

(18)

KN
n ≻IS

n {KN
n ∪ {KN

i }}
∀KN

i ∈ {C − KN
n }

(19)

When the aforementioned conditions are met, no SP has
any incentive to leave its existing coalitions or join another
coalition, as determined by the Pareto-based join and leave
rule outlined in Definition 5.

Theorem 1. Algorithm 1 is guaranteed to converge to a final
coalition formation.

Proof. Based on the preference criterion outlined in Defini-
tion 4, a join or leave operation is only performed if it results
in a Pareto improvement, meaning that each switch leads to a
new and unvisited covering with a higher system utility. Since
there is a finite number of coalitions and SPs, the number of

possible coverings is also finite. As a result, the algorithm is
guaranteed to reach a final coalition formation.

Theorem 2. The final coalition formation of Algorithm 1 is
individually stable.

Proof. Suppose the final coalition formation achieved through
Algorithm 1 is not individually stable, indicating the presence
of an SP with an incentive to join or leave a coalition
according to the Pareto-based rules described in Definition 5.
However, if such an action is taken by the SP, it would
result in a new coalition formation, which contradicts our
initial assumption that the previous coalition formation was
the final one. This contradiction implies that the final coalition
formation obtained from Algorithm 1 is indeed individually
stable.

Algorithm 1 Coalition formation algorithm for collaborative
task offloading

1: Initialization:
2: Set the positions of servers and SPs.
3: Set the SSs for each SP.
4: repeat
5: Select an SP n ∈ N via a predetermined permutation

and find its current set of coalitions KN
n .

6: Uniformly randomly choose a coalition KN
i ∈ KN

n .
7: if {KN

n \KN
i } ≻IS

n KN
n then

8: Make SP n leave coalition KN
i .

9: end if
10: Uniformly randomly choose a server m ∈ M.
11: for all coalition KN

j in server m do
12: if {KN

n ∪ {KN
j }} ≻IS

n KN
n then

13: Make SP n join coalition KN
j .

14: end if
15: end for
16: until No SP has the incentive to change its strategy.
17: Output: The stable SP offloading decisions set A.

The collaborative task offloading scheme poses a challeng-
ing problem known as mixed-integer nonlinear programming
(MINLP), which falls into the NP-hard category. The time
complexity per iteration in Algorithm 1 exhibits a worst-case
scenario of O(N2M2), where N stands for the number of SPs
and M stands for the number of edge servers. Additionally,
the upper bound of the number of iterations required to reach
a solution is exponential.

C. Second Stage: Hedonic Coalition Formation Game for
Service Subscribers

1) maximize total SS utility, which can be formulated as:

P2:
max
B

∑
s∈S

Ts −Ds

Ts
psxs

s.t. C4, C5

(20)

After SPs have determined their offloading strategies, SSs
have the opportunity to choose their preferred SP, indirectly
selecting the computation coalition to which they will send



9

their requests. Their decision is based on selecting the SP
that can offer the lowest service delay. This incentivizes
SSs to switch to the SP that can provide the most efficient
computation coalition for their needs. Consequently, they are
ensured to reach a stable coalition formation where no SS
has the motivation to switch its SP, according to the split and
merge rule outlined in Definition 10.

To address the challenge from the standpoint of SSs, we
present an efficient distributed algorithm designed to solve
the coalition game and attain a Nash-stable outcome. The
algorithm builds upon the final coalition formation determined
by Algorithm 1 and utilizes it as the initial state. Each SS is
given the chance to switch to an alternative SP that offers
a lower delay, thereby improving its utility. The algorithm
continues until no SS has any incentive to deviate from their
selected strategy. This signifies the achievement of a Nash
equilibrium, and the algorithm concludes. The algorithm is
presented in Algorithm 2.

The convergence and stability properties can be established
through the following proof.

Definition 13. A partition P is Nash-stable if

KS
i ≻s K

S
j ∪ {s}

∀s ∈ KS
i ∀KS

i ,K
S
j ∈ P, i ̸= j

(21)

Under the condition described above, no SS has the incentive
to switch to a different coalition, as dictated by the split and
merge rule defined in Definition 11.

Theorem 3. Algorithm 2 is guaranteed to converge to a final
partition.

Proof. Based on the preference relation defined in Defini-
tion 10, each switch operation results in a new and unvisited
partition. It is important to note that the number of possible
partitions of a set is finite, known as the Bell number. Hence,
the algorithm is ensured to reach a final partition within a
finite number of steps.

Theorem 4. The final partition of Algorithm 2 is Nash-stable.

Proof. Let’s assume that the final partition obtained from
Algorithm 2 is not Nash-stable, implying that there is at least
one SP with the incentive to switch its coalition. However,
when the SP decides to switch, a new partition is formed,
which contradicts our initial assumption that the previous
partition was the final one. This contradiction indicates that
the final partition achieved by the algorithm is indeed Nash-
stable, where no SS has any incentive to switch its coalition
under the defined split and merge rules in Definition 11.

The utility maximization scheme for SSs is also a MINLP
problem, which is NP-hard. In Algorithm 2, the worst-case
time complexity per iteration is O(N2M), while the upper
bound of the number of iterations is exponential.

VI. EXPERIMENTAL RESULTS

In this section, we first provide an overview of the ex-
perimental environment for evaluating the proposed scheme.
We describe the system parameters, the implementation of

Algorithm 2 Hedonic coalition formation algorithm for SS
coalition assignments

1: repeat
2: Select an SS s ∈ S via a predetermined permutation

and find its current SP n.
3: Uniformly randomly choose an SP n′ ∈ N .
4: if KS

n′ ≻s K
S
n then

5: Make SS s switch to SP n′.
6: end if
7: until No SSs has the incentive to change its strategy.
8: Output: The stable subscription decision set B.

the experimental testbed, and the utilization of real data. We
then proceed to evaluate the scheme by comparing it against
existing algorithms under different system configurations.

A. Experiment Setup

We consider a system consisting of 1 cloud server, M edge
servers, N SPs, and S SSs. The system offers three types
of services: VR/AR service, online gaming service, and live
video streaming service. SPs and SSs are uniformly distributed
to different services, and SSs of each service are uniformly
distributed to SPs of the same service. The penalty-to-price
ratio is 0.4. Each VM has a processing rate of 1.5GB/s, and
the cost of renting a VM is $20. Additionally, each edge server
has the capacity to support 7 VMs at this processing rate.

Based on empirical studies conducted on VR/AR service
[35], online gaming service [36], and live video streaming ser-
vice [37], we have determined the following service-dependent
parameters. The subscription prices are $50, $25, and $20 for
VR/AR, online gaming, and live video streaming respectively.
The delay requirements for SSs are 20ms, 100ms, and 1s.
The request throughputs for each SS are 100MB/s, 6MB/s,
and 1MB/s. Finally, the request rates for each SS are 120
requests/s, 60 requests/s, and 30 requests/s respectively. These
parameters have been thoughtfully selected based on empirical
research and will be utilized in evaluating the performance
of the proposed scheme during the subsequent experiments.
The simulation has been implemented in Python 3.10 and is
executed within an Ubuntu 22.04 LTS environment, utilizing
an Intel i7-10700k CPU. We performed each experiment
twenty times and calculated the means and standard errors to
ensure the consistency of the outcomes. The error bars in the
figures represent the 95% confidence interval of the results.

To assess the practical effectiveness of the proposed
MSCGTO scheme, we conducted performance evaluations
using real-life applications in our dedicated testbed implemen-
tation. Specifically, we employed the Pokemon Go AR mode
to represent the VR/AR service, the Pokemon Go player versus
player (PVP) mode for the online gaming service, and Twitch
for the live video streaming service. Within our testbed setup,
we employ two Intel i7-10700k CPU nodes connected to a
1Gb/s LAN. We run docker containers created from images
based on Ubuntu 22.04 LTS, emulating the VMs within our
system model. The overall workflow of our testbed is depicted
in Fig. 3. In the experimentation process, we first executed
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Fig. 3: The implemented testbed evaluation workflow.

(a) Pokemon AR mode traces (b) Pokemon Go PVP model traces (c) Twitch traces

Fig. 4: The captured network traces of actual applications.

our algorithm using the simulation settings to achieve the
final stable coalition formation. Subsequently, we launched
Pokemon Go in AR mode, engaged in Pokemon Go PVP
battles, and streamed content from Twitch on our mobile
devices while connected to our edge network. We employed a
network monitor to capture the packets generated during these
activities, as illustrated in Fig. 4. These packets were then
routed to the respective docker containers on our edge network
based on the assignment established by the coalition formation.
Each set of docker containers maintained a packet queue,
and the packets were processed in a round-robin manner.
Finally, after the packets were processed, the overall delay was
measured and reported back to the orchestrator to calculate
the system utility, which was then compared to the simulation
results. It is worth mentioning that due to resource constraints
and cost limitations of our physical equipment, we conducted
smaller-scale experiments in our testbed.

Unless stated otherwise, the default parameter settings for
N,M,S are provided as follows: N = 30, M = 3, S =
450. We compared the proposed MSCGTO scheme against
the following six schemes:

• MultiCoal-SinJoin: Proposed in our previous work

[16], This scheme allows multiple coalitions on each edge
server, but SPs can only join a single coalition. Each SP
is assumed to have a static pool of SSs.

• SinCoal: Proposed in [14], this scheme enables SPs us-
ing the same edge server to decide whether to collaborate
or not. If they choose to collaborate, they form a single
coalition. Thus, there is at most one coalition for each
edge server.

• NonCoop: In this scheme, each SP can only utilize its
own leased edge server resources and does not engage in
any collaborations.

• Greedy: Each SP greedily offloads its SS requests to
the closest server.

• Random: Each SP randomly joins a coalition, without
any strategic decision-making.

• Cloud: This scheme restricts SPs from offloading their
tasks to the edge servers, requiring them to solely rely
on the cloud for their service provisioning.

B. Impact of Profit from the Number of SPs in Simulations

Fig. 5 shows how the total system utility changes with
different numbers of SPs. We know that system utility is



11

10 20 30 40 50 60
Number of SPs

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sy
st
em
 u
til
ity
 (t
ho
us
an
d 
do
lla
rs
)

MTCGTO
MultiCoal-SinJoin
SinCoal
NonCoop
Greedy
Random
cloud

(a) System utility

10 20 30 40 50 60
Number of SPs

0

100

200

300

400

500

600

700

Av
er
ag

e 
SP

 p
ro
fit
 (d
ol
la
rs
)

MTCGTO
MultiCoal-SinJoin
SinCoal
NonCoop
Greedy
Random
cloud

(b) Average SP profit

10 20 30 40 50 60
Number of SPs

6

8

10

12

14

16

18

Av
er
ag

e 
SS

 u
til
ity

 (d
ol
la
rs
)

MTCGTO
MultiCoal-SinJoin
SinCoal
NonCoop
Greedy
Random
cloud

(c) Average SS utility

Fig. 5: Performance with different numbers of SPs in computer-based simulation.
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Fig. 6: Performance with different numbers of edge servers in computer-based simulation.
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Fig. 7: Performance with different numbers of SSs in computer-based simulation.
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Fig. 8: Performance with large numbers of SSs in computer-based simulation.

composed of the total profit of SPs and the total utility of
SSs, so we can analyze it from these two aspects.

First, let’s look at Fig. 5b. Since the number of SSs is held
constant, as the number of SPs increases, the average number
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Fig. 9: Performance with different numbers of SPs in real-world testbed.
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Fig. 10: Performance with different numbers of edge servers in real-world testbed.
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Fig. 11: Performance with different numbers of SSs in real-world testbed.

of SSs served by each SP decreases, leading to a decrease in
the average profit of each SP.

Next, we assess the average utility of SSs. As il-
lustrated in Fig. 5c, for the proposed MSCGTO and
MultiCoal-SinJoin scheme, an increase in the number
of SPs leads to more choices for each SS, resulting in a higher
average utility for SSs. In contrast, for the SinCoal scheme,
where only one coalition is allowed per edge server, the
number of choices for both SPs and SSs is limited, resulting
in no significant change in the average SS utility.

Overall, we observe that the MSCGTO scheme consistently
achieves the highest utility among the evaluated algorithms.

C. Impact of Profit From the Number of Edge Servers in
Simulations

Fig. 6 shows how the system utility changes with different
numbers of edge servers. For MultiCoal-SinJoin and
SinCoal schemes, an increase in the number of edge servers
initially leads to a higher system utility. This is because having
more edge servers provides a greater number of choices for
SPs to offload their services and form coalitions, resulting in
improved delay reduction and higher profit. However, after
reaching a certain point, the increase in system profit becomes
minimal. This is because most SSs have already achieved their
desired delay requirements, and further reducing the delay
does not significantly impact the SPs’ profitability. In contrast,
the proposed MSCGTO scheme does not exhibit the same trend.
This is because MSCGTO is designed to efficiently allocate SSs
to SPs, even with a limited number of edge servers. Therefore,



13

even when there are fewer edge servers, the MSCGTO scheme
can still satisfy the majority of SSs, leaving little room for
further utility improvement.

D. Impact of Profit From the Number of SSs in Simulations

We now examine the impact of the number of SSs on total
system utility, as displayed in Fig. 7. From Fig. 7b, we observe
that the average utility of an SP increases with the number of
SSs. This can be attributed to the fact that with more SSs,
each SP serves a larger number of SSs on average, resulting
in higher revenue and profitability. However, as depicted in
Fig. 7c, the average utility of SSs decreases as the number of
SSs increases. This can be attributed to the higher computation
load when more SSs are present, leading to increased service
delay for each SS. Consequently, the overall satisfaction and
utility of SSs decline.

To investigate the scalability of the proposed scheme, we
conducted additional experiments with larger numbers of SSs,
as shown in Fig. 8. These experiments revealed a consistent
trend, echoing the findings from smaller-scale scenarios. No-
tably, the MSCGTO approach consistently maintains the highest
average SS utility, which can be largely attributed to the
relatively low latency it achieves in the VR service when
compared to alternative approaches. These results underscore
the exceptional scalability of the MSCGTO framework.

E. Testbed Results Evaluation

We conducted a smaller-scale experiment on our testbed
using real data to validate the performance of the proposed
scheme. The experimental results are presented in Figs. 9
to 11, showcasing similar trends as observed in the simula-
tions. One notable difference is observed in the performance of
MultiCoal-SinJoin and SinCoal when there is a high
number of SSs, as depicted in Fig. 11. Due to the hardware
limitations of our testbed, when the number of SSs increases
significantly, the real delay experienced by them becomes
excessively high. As a consequence, the profit of SPs and
the utility of SSs collapse in these schemes. In contrast, the
proposed MSCGTO method allows each SP to distribute its
SS requests among multiple coalitions, effectively reducing
the load on each coalition. By constraining latency within the
bounds of SS requirements, the system is able to benefit from
the increase in subscribers, leading to improved profitability
for SPs and increased utility for SSs, thereby achieving supe-
rior scalability in a complex real-world environment.

F. Algorithms Evaluation

Based on the 95% confidence intervals of the simulation
results, as presented in Figs. 5 to 7, it becomes clear that
MSCGTO exhibits a statistically significant advantage over
other existing algorithms. This observation is further sup-
ported by the testbed results showcased in Figs. 9 to 11,
providing additional evidence of the practical effectiveness
of the proposed scheme. The MSCGTO approach consistently
achieves the highest system utility across various scenarios,
including reaching a 25% increase in system utility com-
pared to MultiCoal-SinJoin [16] and an 87.5% increase

compared to SinCoal [14] when there’s a large number
of SPs in simulation as shown in Fig. 5, demonstrating
better scalability. This can be attributed to two key factors.
Firstly, it allows SPs to participate in multiple coalitions
across different edge servers, enabling them to effectively
serve geographically distributed SSs and reduce propagation
delay. SPs can also effectively balance their workload by
serving SSs from multiple coalitions, reducing queuing de-
lays, and ensuring efficient utilization of resources. Secondly,
it facilitates SSs in dynamically switching between SPs to
minimize their individual latency, thereby elevating the overall
system performance and user satisfaction. By leveraging these
features, MSCGTO is able to deliver superior system utility
and provide an effective solution to address the challenges in
distributed service provisioning.

VII. CONCLUSION

In this paper, we focused on addressing the resource
allocation optimization problem in a multi-service system
characterized by geographically distributed service subscribers
(SSs) and the ability of service providers (SPs) to offload tasks
to multiple edge servers. Furthermore, SSs are granted the
freedom to switch between SPs based on their preferences
and requirements. We propose a multi-stage coalition game
task offloading (MSCGTO) framework to tackle the problem.
To bridge the gap between theoretical analysis and practical
implementation, we conducted experiments on a real-world
testbed using real data from VR/AR, online gaming, and
live video streaming services. The results demonstrated the
effectiveness and scalability of the proposed algorithms in
contrast to existing approaches in both simulation and real-
world testing. Specifically, the MSCGTO framework consis-
tently outperformed all other evaluated algorithms, yielding
a significant increase of 25% in system utility, considering
both SP profitability and SS latency, compared to our pre-
vious research and an 87.5% increase compared to another
work in large-scale scenarios. In our future research, we will
explore the intricacies of privacy by design, security, risk
management, and the incorporation of heterogeneous VMs to
further enhance the practicality and robustness of our proposed
framework. Additionally, we will investigate the applicability
of Stackelberg games and reinforcement learning for more
accurate modeling of interactions between SPs and SSs.
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