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Abstract—Mobile edge computing (MEC) and 5G networks
can provide ultra-low latency connections. Combining the two,
caching services at the network edge can greatly reduce the
delay of virtual reality (VR) and augmented reality (AR) services,
enhancing the Quality of Service (QoS) for users. In this paper,
we investigate an efficient collaborative service caching scheme
between multiple service providers (SPs) with a game-theoretical
approach. We model SPs as players who care about nothing
but their profits and can form coalitions by sharing edge server
resources as well as costs with other members. More than
one coalition can be formed in an edge server. Our algorithm
guarantees to reach a Nash equilibrium, where no one has the
incentive to deviate. Simulation results show that through the
proposed collaboration scheme, SPs can reach a higher profit
compared to several baselines as well as previously proposed
schemes.

Index Terms—Service caching, edge computing, coalition game,
game theory, resource allocation

I. INTRODUCTION

During the coronavirus (COVID-19) pandemic, where ac-

tivities can only be held virtually, the future of virtual reality

(VR) and augmented reality (AR) only becomes brighter as

they can not only provide a more immersive virtual con-

ference or meeting experience, but also give treatments or

supports for patients suffering from psychological disorders

as well as physical illness [1]. However, with the processing

of computation-intensive VR/AR services combined with the

heavy traffic of core networks, it has become quite a challenge

for VR/AR services deployed on the cloud to satisfy the

Quality of Services (QoS) requirements of users.

With the development of multi-access edge computing

(MEC) [2] and 5G technology [3], 5G-enabled edge servers

can be exploited to improve users’ QoS. By offloading tasks or

caching services to the network edge, in the proximity of users,

latency and therefore users’ QoS can be greatly improved [4]

[5] [6]. To increase the cache hit ratio, collaborative service

caching among servers is proposed [7] [8] [9]. Game-theoretic

models have also been suggested to examine the potential

for collaborations between different service providers (SPs)

[10] [11]. However, the possibility of having more than one

coalition in each edge server for more efficient collaborative

service caching has never been considered in past studies.

In this paper, we investigate how SPs can maximize their

profits by forming multiple coalitions and sharing VM re-

sources within a single edge server. We first formulate a

coalition game for SPs to cache their services to edge servers

to reduce latency and freely collaborate with other SPs in the

same edge server to share the costs of VM resources. Later, a

distributed algorithm is proposed to find the Nash equilibrium,

where none of the SPs have the incentive to switch to another

coalition without violating the Pareto criterion.

The remainder of this paper is organized as follows. The

system model is introduced in section II. The coalition game

formation of the collaborative service caching scheme is

formulated in section III. A distributed algorithm is proposed

in section IV to reach the Nash equilibrium. Simulation results

are presented in section V. Finally, conclusions are drawn in

section VI.

II. SYSTEM MODEL

In this section, we will first introduce the coalition game-

based system model for service caching. Secondly, the math-

ematical model of the delay, the revenue, the cost, and the

profit of SPs will be discussed.

The system model is shown in Fig. 1. There are four

key components, including 1 cloud server, M edge servers,

N SPs, and their respective users. The set of servers is

M = {0, 1, · · · ,M}, where 0 denotes the cloud server and

1 ∼ M denotes the edge servers, which follow the P1935-

standard [12]. The set of SPs is N = {1, · · · , N}, presented

in the blue box in Fig. 1. Each of them has a set of users. We

assume the switching costs to be high and the users won’t

switch to other SPs in the short term [13]. Edge servers

are provided by infrastructure providers, and SPs can lease

resources from them. A coalition is formed when SPs leasing

VMs from the same edge server decide to share their resources

as well as the costs with each other. Each SP can either has

its service directly from the cloud server or caches its service

to an edge server to reduce delay. If an SP decides to use

an edge server, it can also decide whether to lease and pay

for the VMs in the edge server provided by the infrastructure

providers, or share the VMs with other SPs using the same

edge server to reduce cost and utilize idle resources.

For example, in Fig. 1, the rightmost SP has its service

straight from the cloud server, making it unable to meet the

delay requirement of its user, and it ends up not getting paid.

On the other hand, the second rightmost SP caches its service

to an edge server to reduce delay, but doesn’t share its VM

with other SPs. As a result, it gets paid by its users for meeting



Fig. 1. System model.

the delay requirement, while also pays for the whole cost of

its leased VM resource. The rest of the SPs, however, not only

cache their services to edge servers, but also form coalitions

to share VMs, resulting in lower costs and higher revenues.

A. Delay Model

The delay of the service of each SP consists of propagation

delay and response delay. When an SP is served by the cloud,

the response delay would be a constant. But when it is served

by a coalition in an edge server, the response delay would be

the total response time of an M/M/c queue. The delay formula

is formulated as

Dn = Dp,n +Dr,k (1)

where

Dp,n = αdn (2)

Dr,k =
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where Dn is the total delay of the service of SP n, k is the

coalition SP n is in, m is the server coalition k is in, Dp,n

is the propagation delay from the server of SP n to itself,

Dr,k is the total response delay of coalition k, α is the ratio

of propagation delay to distance traveled, di is the distance

between SP n and its server, E is Erlang’s C formula [14],

the probability of a job in an M/M/c queue to be sent into

the queue as opposed to being served immediately, rd is the

response delay of a cloud server, vnk is the number of VMs

in coalition k, unsk is the total number of users served by the

SPs in coalition k, µ is the processing rate of each VM, and

λ is the request rate of each user.

B. Revenue Model

The revenue of each SP comes from the payments of its

users. Each SP provides various levels of delay guarantee, each

with a different price as well as penalty. The user will pay its

SP if the delay of the service it received is under the agreed

delay guarantees. On the contrary, if the delay requirement is

not met, the SP will have to pay the users as penalties.

The revenue of SP n can be formulated as

Rn =
∑

j∈Sn

qj (5)

where

qj =

{

ρj , if Dn ≤ T ∗

j

−γρj , otherwise
(6)



where

ρj = lp · lj (7)

T ∗

j = T − ld · (lj − 1) (8)

where Rn is the revenue of SP n, Sn is the set of users served

by SP n, qj is the money user j has to pay to its SP, ρj is the

service subscription price of user j, 0 < γ ≤ 1 is the penalty

to price ratio, Dn is the delay of the service of SP n defined

in (1), T ∗

j is the delay requirement of user j, lj ∈ N is the

subscription level of user j, lp is the price of each level, ld is

the delay difference of each level, and T is the delay of the

base subscription level i.e. level 1.

C. Cost Model

The cost of each SP is the payment to infrastructure

providers for leasing edge server VMs. The formula is written

as

Cn =

{

vnkvc
unpi

unsk
, if 1 ≤ m ≤ M

0, if m = 0
(9)

where Cn is the cost of SP n, m is the server SP n uses,

k is the coalition SP n is in, vnk is the number of VMs in

coalition k, vc is the cost of a VM, unsk is the total number

of users served by the SPs in coalition k, and unpi is the

number of users served by SP n. If an SP doesn’t share VMs

with others, then there will be only one SP in its coalition, it

would therefore have to pay for all of the VMs it leases. If

an SP doesn’t cache its service to an edge server i.e. m = 0,

then the cost is 0 as it doesn’t have to pay for edge server

resources.

D. Profit Model

The profit of each SP is simply the revenue minus the cost,

which can be formulated as

Pn = Rn − Cn (10)

where Pn is the profit of SP n, Rn is the revenue of SP n

defined in (5), and Cn is the cost of SP n defined in (9).

E. Problem Formulation

The optimization goal is to maximize the total profit of the

system under the resource limit of each edge server, which

can be formulated as

max

N
∑

n=1

Pn

s.t.
∑

j∈Vm

cpuj ≤ clm, ∀m ∈ [1,M ]

(11)

where Pn is the profit of SP n defined in (10), Vm is the set

of VMs of edge server m, cpuj is the CPU unit of VM j, and

clm is the CPU unit limit of edge server m.

III. COLLABORATIVE SERVICE CACHING SCHEME

In this section, we will discuss the properties of the collab-

orative service caching scheme.

In order to investigate the collaboration between SPs, a

coalition game is introduced, the coalition game is formulated

as follows:

• Servers: There are 1 cloud server and M edge servers

• Players: There are N SPs, and they are the players.

• Strategies: Each player has 3 strategies.

1) Stay on the cloud server.

2) Cache its service by leasing VMs on an edge server.

3) Cache its service by joining a coalition on an edge

server to share VMs with other members in the same

coalition.

• Utility: The utility of a player is the profit of the player,

defined in (10).

A coalition is a group of players sharing the same set

of VMs and their costs in an edge server. It can consist of

one or more players. There can be multiple coalitions inside

an edge server. Players can freely switch between different

coalitions on different edge servers to improve their utilities

on the condition of not reducing other players’ utilities.

The utility of an SP is dependent on its own as well as

other SPs’ strategies, denoted as un(an, a−n), where an is

the strategy of SP n i.e. the server and coalition it selects,

while a−n = {a1, · · · , an−1, an+1, · · · , aN} is the strategies

of other SPs. Fm,k denotes the coalition k inside the server

m.

Based on the coalition formation game model [15], we

introduce the Pareto-based preference criterion of SPs as

below.

Definition 1. (Pareto-Based Preference Criterion) Suppose the

current strategy of SP n, an = Fm1,k1
and there exist a new

strategy a∗n = Fm2,k2
, then

Fm2,k2
≻n Fm1,k1

⇔ un(a
∗

n, a−n) > un(an, a−n)

s.t.un(aq, a
∗

−q) ≥ un(aq, q−q)

∀q ∈ {Fm1,k1
∪ Fm2,k2

}\n

(12)

This means that an SP will only prefer Fm2,k2
over Fm1,k1

if it can increase its profit after the switch and that the switch

won’t jeopardize the profit of any other SP in the two coalitions

involved. Since only two coalitions are involved in a switch,

the profit of the SPs in other coalitions won’t be affected,

making the switch a Pareto improvement of the system.

IV. DISTRIBUTED COALITION GAME-BASED ALGORITHM

In this section, we will propose an efficient distributed

algorithm to solve the coalition game and achieve a Nash-

stable result.

At the start of the algorithm, the location of the servers and

the users of the SPs are initialized. All the SPs originally have

their services from the cloud. Each player will then have the

chance to cache its service to an edge server by creating or



joining a coalition. Members of each coalition can also change

the number of VMs in their coalition if it will benefit each of

the members. When no player has the incentive to deviate

from its chosen strategy, the Nash equilibrium is found, and

the algorithm will terminate. The detail of the algorithm is

shown in Algorithm 1.

Theorem 1. Algorithm 1 is guaranteed to converge to a final

partition.

Proof. According to the preference criterion defined in (12),

a switch operation only occurs if it leads to a Pareto improve-

ment, which means that each switch results in a new and

unvisited partition with higher system utility. We know that the

number of possible partitions of a set is a finite number known

as the Bell number. Therefore, the algorithm is guaranteed to

reach a final partition.

Theorem 2. The final partition of Algorithm 1 is Nash-stable.

Proof. Assume the final partition of Algorithm 1 is not Nash-

stable, which means that there exists at least one SP with

the incentive to switch its coalition. However, after the SP

switches, a new partition is created, which is contradictory to

our assumption that the previous partition is the final partition.

Algorithm 1 Distributed coalition game-based algorithm

1: Initialization:

2: Set the positions of servers and SPs.

3: Set the users for each SP

4: repeat

5: Select an SP n ∈ N via a predetermined permutation

and find its current coalition Fm1,k1

6: Uniformly randomly choose a server m2 ∈ M

7: Create an empty coalition in server m2

8: for all coalition k2 in server m2 do

9: if Fm1,k1
= Fm2,k2

then

10: continue

11: end if

12: if Fm2,k2
≻n Fm1,k1

then

13: Add Fm2,k2
to candidate list

14: end if

15: end for

16: if candidate list is not empty then

17: Make SP n switch to the coalition in the candidate

list that can make it reach the highest profit
18: end if

19: Delete empty coalitions

20: Add or reduce the number of VMs in the coalition of

SP n if the profit of each member in the coalition will

improve
21: until No SP has the incentive to change its strategy.

22: Output: The stable coalition formation result.

The profit maximization scheme is a mixed-integer nonlin-

ear programming (MINLP) problem, which is NP-hard. The
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Fig. 2. System profit with different numbers of SPs.

worst-case time complexity for each iteration in Algorithm 1

is O(N2), while the upper-bound of the number of iterations

is exponential.

V. SIMULATION RESULTS

In this section, we analyzed the performance of the proposed

scheme and compared it with other schemes through the

numerical results of our simulation.

We consider 1 cloud server, M edge servers, and N SPs.

Each SP has a random pool of users with 3 levels of delay

requirements. The number of users for each level for each SP

follows a uniform distribution U(5, 20). The unit level price

is $2. The delay requirement for level 1 is 100ms, and the

delay requirement reduction for each level increase is 10ms.

The penalty to price ratio is 0.5. The request rate of each user

is 0.5 requests per second, while the processing rate of each

VM is 50 requests per second. The rent of a VM is $70. The

CPU unit limit of each edge server is 70, and the CPU unit

allocated for each VM is 10.

Unless stated otherwise, the default parameter settings for

N and M are provided as follow: N = 100, M = 6.

We compared the proposed scheme (CoalitionMul) with

the following five schemes:

• Single coalition (CoalitionSin): Proposed in [10].

SPs using the same edge server can choose to collaborate

or not, and those who choose to collaborate form a

coalition. In other words, there will be at most one

coalition for each edge server.

• Greedy delay (Greedy): Each SP greedily selects a

coalition that will achieve the lowest delay and switches

to it.

• Random (Random): Each SP randomly selects a coalition

and switches to it.

• No cooperation (NonCoop): Each SP can only use its

own leased edge server resources.

• No service caching (Cloud): All SPs have their services

from the cloud server.
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Fig. 3. Average SP profit.
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Fig. 4. Average SP revenue.
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Fig. 5. Average SP cost.

A. Impact of profit from the number of SPs

Fig. 2 shows how the total system profit changes with

different numbers of SPs. Although the system profit increases

with the number of SPs in the proposed method, the average

profit of each SP actually decreases when there are more SPs

and users, as shown in Fig. 3. We know that profit is equal
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Fig. 6. Proportion of satisfied users with different numbers of SPs.
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Fig. 7. System profit with different numbers of edge servers.
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Fig. 8. Proportion of satisfied users with different numbers of edge servers.

to revenue minus cost, so we can analyze it from these two

aspects.

First, let’s look at how revenue changes with different

numbers of SPs as shown in Fig. 4. Revenue can be explained

by the proportion of satisfied users as they’re willing to pay

their SPs once their delay requirements are satisfied, which is



displayed in Fig. 6. When there are fewer service providers, an

SP can easily find a small coalition on an edge server to switch

to. But when the number of SPs increases, each coalition

on edge servers becomes bigger, making the response time

and the overall delay larger, resulting in more users receiving

services that are over their delay requirement, leading to

a decrease in the proportion of the users with their delay

requirement satisfied.

Fig. 5 shows that the average cost decreases with a higher

number of SPs. This can be explained by the increase in the

average number of members in each coalition when there are

more SPs, reducing the average cost for each member.

From the above analysis, it is shown that both the average

revenue and the average costs drop with the increase in the

number of SPs. However, the speed of the reduction of revenue

is higher than that of the reduction of cost, so the average profit

of an SP still decreases as the number of SPs increases.

From Fig. 6, we can see that Greedy outperforms our

proposed algorithm in terms of the proportion of the users

with their delay requirement satisfied. It is due to the fact that

Greedy only values the delay of service, while the proposed

algorithm also looks at the profit, including the revenue as

well as the cost. As a result, even though Greedy can reach

a higher level of user satisfaction, the profit achieved can never

beat the proposed algorithm.

B. Impact of profit from the number of edge servers

Fig. 7 shows how the system profit changes with different

numbers of edge servers. When the number of edge servers

is still relatively small, the proposed algorithm reaches a

higher system profit with more edge servers, as it is easier

to reduce the delay when there are lots of choices of servers

and coalitions for SPs to cache their services to. We can see

this in Fig. 8. But at a certain point, the increase in system

profit becomes minimal. The reason is that most of the users

already have their delay requirement satisfied, so there is no

incentive in further reducing the delay, as the SPs already get

their money from the users.

Take a look at Greedy in both figures. The SPs in the

greedy scenario always look for the lowest delay possible,

regardless of the cost, even if their users are already satisfied.

As a result, their profits keep dropping with the increase of

choices, since they’re willing to spend cash on the best choice

possible for minimum delay.

C. Algorithms comparison

From Fig. 2 and Fig. 7, we can see that the proposed coali-

tion scheme (CoalitionMul) always achieves the highest

profit compared to the NonCoop, Greedy, Random, and

Cloud, as it allows different SPs to share their VMs on the

same edge server to make use of under-utilized resources and

reduce costs. Since it allows SPs to form multiple coalitions

in the same edge server, instead of limiting to one coalition,

the proposed scheme also outperforms CoalitionSin.

As for the proportion of the users with their delay require-

ment satisfied, Greedy, which always looks for the lowest

delay possible, outperforms the proposed algorithm, as the

proposed algorithm also takes the cost of edge server resources

into account and only views the proportion of satisfied users

as a way to achieve higher revenue.

VI. CONCLUSION

In this paper, we investigated the collaboration between

SPs through a game-theoretical mechanism. We model SPs as

players trying to maximize their own profits by caching their

service to an edge server to meet their users’ delay requirement

and form coalitions to share the cost of their VMs and

make use of under-utilized resources. We proposed a coalition

game-based algorithm to solve the problem. Simulation results

showed that the proposed algorithm outperforms the other five

algorithms, achieving 60% and 35% higher profit compared

and to a non-cooperative scheme and a collaboration method

proposed in a previous work respectively.
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